default
tkmath
tkmathtkmath.Matrix4dadd(Matrix4d m) - Add another matrix m to this instance
BuildEulerXYX4d(Double a, b, c) : Matrix4d - Build an euler rotation matrix with XYX convention
BuildEulerXYZ4d(Double a, b, c) : Matrix4d - Build an euler rotation matrix with XYZ convention
BuildEulerXZX4d(Double a, b, c) : Matrix4d - Build an euler rotation matrix with XZX convention
BuildEulerXZY4d(Double a, b, c) : Matrix4d - Build an euler rotation matrix with XZY convention
BuildEulerYXY4d(Double a, b, c) : Matrix4d - Build an euler rotation matrix with YXY convention
BuildEulerYXZ4d(Double a, b, c) : Matrix4d - Build an euler rotation matrix with YXZ convention
BuildEulerYZX4d(Double a, b, c) : Matrix4d - Build an euler rotation matrix with YZX convention
BuildEulerYZY4d(Double a, b, c) : Matrix4d - Build an euler rotation matrix with YZY convention
BuildEulerZXY4d(Double a, b, c) : Matrix4d - Build an euler rotation matrix with ZXY convention
BuildEulerZXZ4d(Double a, b, c) : Matrix4d - Build an euler rotation matrix with ZXZ convention
BuildEulerZYX4d(Double a, b, c) : Matrix4d - Build an euler rotation matrix with ZYX convention
BuildEulerZYZ4d(Double a, b, c) : Matrix4d - Build an euler rotation matrix with ZYZ convention
BuildLookAtMatrix4d(Vector3d eye, center, up) : Matrix4d - Build a look at matrix
BuildPerspectiveMatrix4d(Double fov, aspect, zNear, zFar) : Matrix4d - Builds a perspective matrix
BuildRotateMatrix4d(Double angle, Vector3d axis) : Matrix4d - Build a rotation matrix
BuildTranslateMatrix4d(Vector3d t) : Matrix4d - Build a translation matrix
det() : Double - Calculate determinant of matrix
getA() : Double - Get value of a element
getAbs() : Double - Calculate the Hilbert-Schmidt norm of the matrix
getAbsSqr() : Double - Calculate the squared Hilbert-Schmidt norm of the matrix
getB() : Double - Get value of b element
getC() : Double - Get value of c element
getCol(int col) : Vector4d - Get column 'col' values
getD() : Double - Get value of d element
getE() : Double - Get value of e element
getF() : Double - Get value of f element
getG() : Double - Get value of g element
getH() : Double - Get value of h element
getI() : Double - Get value of i element
getJ() : Double - Get value of j element
getK() : Double - Get value of k element
getL() : Double - Get value of l element
getM() : Double - Get value of m element
getN() : Double - Get value of n element
getO() : Double - Get value of o element
getP() : Double - Get value of p element
getRow(int row) : Vector4d - Get row 'row'
getString() : String - Get string representation of matrix ((a, b, c, d), (e, f, g, h), (i, j, k, l), (m, n, o, p))
init(Double a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) - Initialize matrix
initCol(int col, Double a, b, c, d) - Initialize column 'col'
initColV(int col, Vector4d v) - Initialize column 'col'
initEulerXYX(Double a, b, c) - Initialize with euler roation matrix
initEulerXYZ(Double a, b, c) - Initialize with euler roation matrix
initEulerXZX(Double a, b, c) - Initialize with euler roation matrix
initEulerXZY(Double a, b, c) - Initialize with euler roation matrix
initEulerYXY(Double a, b, c) - Initialize with euler roation matrix
initEulerYXZ(Double a, b, c) - Initialize with euler roation matrix
initEulerYZX(Double a, b, c) - Initialize with euler roation matrix
initEulerYZY(Double a, b, c) - Initialize with euler roation matrix
initEulerZXY(Double a, b, c) - Initialize with euler roation matrix
initEulerZXZ(Double a, b, c) - Initialize with euler roation matrix
initEulerZYX(Double a, b, c) - Initialize with euler roation matrix
initEulerZYZ(Double a, b, c) - Initialize with euler roation matrix
initf(float a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) - Initialize matrix
initIdentity() - Initialize with identity matrix.
initRow(int row, Double a, b, c, d) - Initialize row 'row'
initRowV(int row, Vector4d v) - Initialize row 'row'
invert() - Calculate inversion of matrix, so that A*A-1=U
mul(Matrix4d m) - Multiply this instance by matrix m
mulf(Double v) - Multiply this instance with scalar value v
mulRev(Matrix4d m) - Reverse-multiply matrix m by this instance (m * this)
mulv(Vector4d v) : Vector4d - Multiply this instance with a 4dim vector
New(Object a) : Matrix4d - Initialize from an array and return new instance of Matrix4d
setA(Double v) - Set a element to v
setB(Double v) - Set b element to v
setC(Double v) - Set c element to v
setCol(int col, Vector4d v) - Set column 'col' with values from v
setD(Double v) - Set d element to v
setE(Double v) - Set e element to v
setF(Double v) - Set f element to v
setG(Double v) - Set g element to v
setH(Double v) - Set h element to v
setI(Double v) - Set i element to v
setJ(Double v) - Set j element to v
setK(Double v) - Set k element to v
setL(Double v) - Set l element to v
setM(Double v) - Set m element to v
setN(Double v) - Set n element to v
setO(Double v) - Set o element to v
setP(Double v) - Set p element to v
setRow(int r, Vector4d v) - Set row r with values from v
sub(Matrix4d m) - Substract another matrix m from this instance
transpose() - Transpose matrix
unit() - Normalise matrix using Hilbert-Schmidt norm
unitScale(Double s) - Normalise matrix using Hilbert-Schmidt norm and multiply by s afterwardsMethod add | |||||
Add another matrix m to this instance | |||||
Signature | |||||
| |||||
Arguments | |||||
|
Method BuildEulerXYX4d | |||
Build an euler rotation matrix with XYX convention | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method BuildEulerXYZ4d | |||
Build an euler rotation matrix with XYZ convention | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method BuildEulerXZX4d | |||
Build an euler rotation matrix with XZX convention | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method BuildEulerXZY4d | |||
Build an euler rotation matrix with XZY convention | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method BuildEulerYXY4d | |||
Build an euler rotation matrix with YXY convention | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method BuildEulerYXZ4d | |||
Build an euler rotation matrix with YXZ convention | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method BuildEulerYZX4d | |||
Build an euler rotation matrix with YZX convention | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method BuildEulerYZY4d | |||
Build an euler rotation matrix with YZY convention | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method BuildEulerZXY4d | |||
Build an euler rotation matrix with ZXY convention | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method BuildEulerZXZ4d | |||
Build an euler rotation matrix with ZXZ convention | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method BuildEulerZYX4d | |||
Build an euler rotation matrix with ZYX convention | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method BuildEulerZYZ4d | |||
Build an euler rotation matrix with ZYZ convention | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method BuildLookAtMatrix4d | |||
Build a look at matrix | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method BuildPerspectiveMatrix4d | |||
Builds a perspective matrix | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method BuildRotateMatrix4d | |||
Build a rotation matrix | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method BuildTranslateMatrix4d | ||||
Build a translation matrix | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Method det | |||||
Calculate determinant of matrix | |||||
Signature | |||||
| |||||
Returns | |||||
|
Method getAbs | |||||
Calculate the Hilbert-Schmidt norm of the matrix | |||||
Signature | |||||
| |||||
Returns | |||||
|
Method getAbsSqr | |||||
Calculate the squared Hilbert-Schmidt norm of the matrix | |||||
Signature | |||||
| |||||
Returns | |||||
|
Method getCol | ||||||||||
Get column 'col' values | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
| ||||||||||
Method getRow | ||||||||||
Get row 'row' | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
| ||||||||||
Method getString | |||||
Get string representation of matrix ((a, b, c, d), (e, f, g, h), (i, j, k, l), (m, n, o, p)) | |||||
Signature | |||||
| |||||
Returns | |||||
|
Method init | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initialize matrix | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Signature | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Arguments | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Method initCol | |
Initialize column 'col' | |
Signature | |
Arguments | |
Method initColV | |||||||||||||||
Initialize column 'col' | |||||||||||||||
Signature | |||||||||||||||
| |||||||||||||||
Arguments | |||||||||||||||
|
Method initEulerXYX | |
Initialize with euler roation matrix | |
Signature | |
Arguments | |
Method initEulerXYZ | |
Initialize with euler roation matrix | |
Signature | |
Arguments | |
Method initEulerXZX | |
Initialize with euler roation matrix | |
Signature | |
Arguments | |
Method initEulerXZY | |
Initialize with euler roation matrix | |
Signature | |
Arguments | |
Method initEulerYXY | |
Initialize with euler roation matrix | |
Signature | |
Arguments | |
Method initEulerYXZ | |
Initialize with euler roation matrix | |
Signature | |
Arguments | |
Method initEulerYZX | |
Initialize with euler roation matrix | |
Signature | |
Arguments | |
Method initEulerYZY | |
Initialize with euler roation matrix | |
Signature | |
Arguments | |
Method initEulerZXY | |
Initialize with euler roation matrix | |
Signature | |
Arguments | |
Method initEulerZXZ | |
Initialize with euler roation matrix | |
Signature | |
Arguments | |
Method initEulerZYX | |
Initialize with euler roation matrix | |
Signature | |
Arguments | |
Method initEulerZYZ | |
Initialize with euler roation matrix | |
Signature | |
Arguments | |
Method initf | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initialize matrix | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Signature | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Arguments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Method initIdentity | |||
Initialize with identity matrix. | |||
Signature | |||
|
Method initRow | |
Initialize row 'row' | |
Signature | |
Arguments | |
Method initRowV | |||||||||||||||
Initialize row 'row' | |||||||||||||||
Signature | |||||||||||||||
| |||||||||||||||
Arguments | |||||||||||||||
|
Method invert | |||
Calculate inversion of matrix, so that A*A-1=U | |||
Signature | |||
|
Method mul | |||||
Multiply this instance by matrix m | |||||
Signature | |||||
| |||||
Arguments | |||||
|
Method mulf | |||||
Multiply this instance with scalar value v | |||||
Signature | |||||
| |||||
Arguments | |||||
|
Method mulRev | |||||
Reverse-multiply matrix m by this instance (m * this) | |||||
Signature | |||||
| |||||
Arguments | |||||
|
Method mulv | ||||
Multiply this instance with a 4dim vector | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Method New | ||||
Initialize from an array and return new instance of Matrix4d | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Method setCol | |||||||||||||||
Set column 'col' with values from v | |||||||||||||||
Signature | |||||||||||||||
| |||||||||||||||
Arguments | |||||||||||||||
|
Method setRow | |||||||||||||||
Set row r with values from v | |||||||||||||||
Signature | |||||||||||||||
| |||||||||||||||
Arguments | |||||||||||||||
|
Method sub | |||||
Substract another matrix m from this instance | |||||
Signature | |||||
| |||||
Arguments | |||||
|
Method transpose | |||
Transpose matrix | |||
Signature | |||
|
Method unit | |||
Normalise matrix using Hilbert-Schmidt norm | |||
Signature | |||
|
Method unitScale | |||||
Normalise matrix using Hilbert-Schmidt norm and multiply by s afterwards | |||||
Signature | |||||
| |||||
Arguments | |||||
|
auto-generated by "DOG", the TkScript document generator. Thu, 11/Dec/2025 13:41:59