default
tkmath
tkmath
tkmath.Complexd
add(Complexd v)
- add complex number v to this instance
div(Complexd v)
- Divide this instance by complex v
getA() : Double
- Get a property of reia
getAbs() : Double
- Returns length of complex number
getAbsSqr() : Double
- Returns squared length of complex number (faster than abs)
getPolarString() : String
- Get string representation of complex number (reia)
getR() : Double
- Get r property of reia
getString() : String
- Get string representation of complex number (x+iy)
getX() : Double
- Get x property of x+iy
getY() : Double
- Get y property of x+iy
init(Double a, b)
- Set value of instance to x=a and y=b (x+iy)
initf(float a, b)
- Set value of instance to single precision x=a and y=b (x+iy)
initPolar(Double a, b)
- Set value of instance to r=_a and a=_b (reia)
initPolarf(sF32 a, b)
- Set value of instance to r=_a and a=_b (reia)
invert()
- Invert this instance (v=1/v)
mul(Complexd v)
- Multiply this instance with complex v
mulConj(Complexd v) : float
- Multiply this instance with complex conjugated v, ((x1+iy1)*(x2-iy2))
muld(Double v)
- Multiply this instance with scalar v
New(Double a, b) : Complexd
- Returns new instance with values x=a and y=b of (x+iy)
NewPolar(Double va, vb) : Complexd
- Returns new instance with values r=va anda a=vb of (reia)
setA(Double a)
- Set a property of reia
setR(Double r)
- Set r property of reia
setX(Double x)
- Set x property of x+iy
setY(Double x)
- Set y property of x+iy
sub(Complexd v)
- substract complex number v from this instance
unit()
- Set length of instance to 1
unitScale(Double s)
- Set length of instance to sMethod add | |||||
add complex number v to this instance | |||||
Signature | |||||
| |||||
Arguments | |||||
|
Method div | |||||
Divide this instance by complex v | |||||
Signature | |||||
| |||||
Arguments | |||||
|
Method getAbsSqr | |||||
Returns squared length of complex number (faster than abs) | |||||
Signature | |||||
| |||||
Returns | |||||
|
Method getPolarString | |||||
Get string representation of complex number (reia) | |||||
Signature | |||||
| |||||
Returns | |||||
Method getString | |||||
Get string representation of complex number (x+iy) | |||||
Signature | |||||
| |||||
Returns | |||||
|
Method init | |
Set value of instance to x=a and y=b (x+iy) | |
Signature | |
Arguments | |
Method initf | |||||||||||||||
Set value of instance to single precision x=a and y=b (x+iy) | |||||||||||||||
Signature | |||||||||||||||
| |||||||||||||||
Arguments | |||||||||||||||
|
Method initPolar | |
Set value of instance to r=_a and a=_b (reia) | |
Signature | |
Arguments | |
Method initPolarf | |||||||||||||||
Set value of instance to r=_a and a=_b (reia) | |||||||||||||||
Signature | |||||||||||||||
| |||||||||||||||
Arguments | |||||||||||||||
|
Method invert | |||
Invert this instance (v=1/v) | |||
Signature | |||
|
Method mul | |||||
Multiply this instance with complex v | |||||
Signature | |||||
| |||||
Arguments | |||||
|
Method mulConj | ||||||||||
Multiply this instance with complex conjugated v, ((x1+iy1)*(x2-iy2)) | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Method muld | |||||
Multiply this instance with scalar v | |||||
Signature | |||||
| |||||
Arguments | |||||
|
Method New | |||
Returns new instance with values x=a and y=b of (x+iy) | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method NewPolar | |||
Returns new instance with values r=va anda a=vb of (reia) | |||
Signature | |||
Arguments | |||
Returns | |||
|
Method sub | |||||
substract complex number v from this instance | |||||
Signature | |||||
| |||||
Arguments | |||||
|
Method unit | |||
Set length of instance to 1 | |||
Signature | |||
|
Method unitScale | |||||
Set length of instance to s | |||||
Signature | |||||
| |||||
Arguments | |||||
|
auto-generated by "DOG", the TkScript document generator. Mon, 28/Dec/2015 13:15:54