tkmath
tkmath
absd(Double a) : Double (tkmath)
- Returns double precision absolute number
absf(float a) : float (tkmath)
- Returns single precision absolute number
acoscd(Complexd a) : Complexd (tkmath)
- Returns complex acos(a)
acoscf(Complexf a) : Complexf (tkmath)
- Returns complex acos(a)
acosd(Double a) : Double (tkmath)
- Calculate double precision acos(a)
acosf(float a) : float (tkmath)
- Calculate single precision acos(a)
acoshcd(Complexd a) : Complexd (tkmath)
- Returns complex acosh(a)
acoshcf(Complexf a) : Complexf (tkmath)
- Returns complex acosh(a)
acoshd(Double a) : Double (tkmath)
- Calculate double precision acosh(a)
acoshf(float a) : float (tkmath)
- Calculate single precision acosh(a)
asincd(Complexd a) : Complexd (tkmath)
- Returns complex asin(a)
asincf(Complexf a) : Complexf (tkmath)
- Returns complex asin(a)
asind(Double a) : Double (tkmath)
- Calculate double precision asin(a)
asinf(float a) : float (tkmath)
- Calculate single precision asin(a)
asinhcd(Complexd a) : Complexd (tkmath)
- Returns complex asinh(a)
asinhcf(Complexf a) : Complexf (tkmath)
- Returns complex asinh(a)
asinhd(Double a) : Double (tkmath)
- Calculate double precision asinh(a)
asinhf(float a) : float (tkmath)
- Calculate single precision asinh(a)
atan2d(Double a, b) : Double (tkmath)
- Calculate double precision atan(a/b), does not throw an exception when b is zero,
atan2f(float a, b) : float (tkmath)
- Calculate single precision atan(a/b), does not throw an exception when b is zero (but when a==b==0),
atancd(Complexd a) : Complexd (tkmath)
- Returns complex atan(a)
atancf(Complexf a) : Complexf (tkmath)
- Returns complex atan(a)
atand(Double a) : Double (tkmath)
- Calculate double precision atan(a)
atanf(float a) : float (tkmath)
- Calculate single precision atan(a)
atanhcd(Complexd a) : Complexd (tkmath)
- Returns complex atanh(a)
atanhcf(Complexf a) : Complexf (tkmath)
- Returns complex atanh(a)
atanhd(Double a) : Double (tkmath)
- Calculate double precision atanh(a)
atanhf(float a) : float (tkmath)
- Calculate single precision atanh(a)
ceild(Double a) : Double (tkmath)
- Returns next natural value to a
ceilf(float a) : float (tkmath)
- Returns next natural value to a
complexd(Double a, b) : Complexd (tkmath)
- Returns new instance with values x=a and y=b of (x+iy)
complexf(float a, b) : Complexf (tkmath)
- Returns new instance with values x=a and y=b of (x+iy)
complexfPolar(float va, vb) : Complexf (tkmath)
- Returns new instance with values r=va and a=vb of (reia)
complexfPolar(Double va, vb) : Complexd (tkmath)
- Returns new instance with values r=va and a=vb of (reia)
coscd(Complexd a) : Complexd (tkmath)
- Returns complex cos(a)
coscf(Complexf a) : Complexf (tkmath)
- Returns complex cos(a)
cosd(Double a) : Double (tkmath)
- Calculate double precision cos(a)
cosf(float a) : float (tkmath)
- Calculate single precision cos(a)
coshcd(Complexd a) : Complexd (tkmath)
- Returns complex cosh(a)
coshcf(Complexf a) : Complexf (tkmath)
- Returns complex cosh(a)
coshd(Double a) : Double (tkmath)
- Calculate double precision cosh(a)
coshf(float a) : float (tkmath)
- Calculate single precision cosh(a)
exp10d(Double a) : Double (tkmath)
- Returns 10a
exp10f(float a) : float (tkmath)
- Returns 10a
exp2d(Double a) : Double (tkmath)
- Returns 2a
exp2f(float a) : float (tkmath)
- Returns 2a
expcd(Complexd a) : Complexd (tkmath)
- Returns complex ea
expcf(Complexf a) : Complexf (tkmath)
- Returns complex ea
expd(Double a) : Double (tkmath)
- Returns ea
expf(float a) : float (tkmath)
- Returns ea
floord(Double a) : Double (tkmath)
- Returns previous natural value to a
floorf(float a) : float (tkmath)
- Returns previous natural value to a
hypotd(Double a, b) : Double (tkmath)
- Calculate double precision length of hypotenuse
hypotf(float a, b) : float (tkmath)
- Calculate single precision length of hypotenuse
log10d(Double a) : Double (tkmath)
- Returns log10(a)
log10f(float a) : float (tkmath)
- Returns log10(a)
log2d(Double a) : Double (tkmath)
- Returns log2(a)
log2f(float a) : float (tkmath)
- Returns log2(a)
logcd(Complexd a) : Complexd (tkmath)
- Returns complex log(a)
logcf(Complexf a) : Complexf (tkmath)
- Returns complex log(a)
logd(Double a) : Double (tkmath)
- Returns log(a)
logf(float a) : float (tkmath)
- Returns log(a)
matrix2d(Double va, vb, vc, vd) : Matrix2d (tkmath)
- Initialise and return new instance of Matrix2d
matrix2f(float va, vb, vc, vd) : Matrix2f (tkmath)
- Initialise and return new instance of Matrix2f
matrix3d(Double va, vb, vc, vd, ve, vf, vg, vh, vi) : Matrix3d (tkmath)
- Initialise and return new instance of Matrix3d
matrix3f(float va, vb, vc, vd, ve, vf, vg, vh, vi) : Matrix3f (tkmath)
- Initialise and return new instance of Matrix3f
matrix4d(Object o) : Matrix4d (tkmath)
- Initialise from an array and return new instance of Matrix4d
matrix4f(Object o) : Matrix4f (tkmath)
- Initialise from an array and return new instance of Matrix4f
modd(Double a, b) : Double (tkmath)
- Returns remainder of a/b
modf(float a, b) : float (tkmath)
- Returns remainder of a/b
powcd(Complexd a, b) : Complexd (tkmath)
- Returns complex ab
powcf(Complexf a, b) : Complexf (tkmath)
- Returns complex ab
powd(Double a, b) : Double (tkmath)
- Returns ab
powf(float a, b) : float (tkmath)
- Returns ab
quaterniond(Double a, b, c, d) : Quaterniond (tkmath)
- Init quaternion to a+ib+jc+kd and return new instance
quaternionf(float a, b, c, d) : Quaternionf (tkmath)
- Init quaternion to a+ib+jc+kd and return new instance
relCmpd(Double a, b) : int (tkmath)
- Do a fast relative comparison of Double values
relCmpf(float a, b) : int (tkmath)
- Do a fast relative comparison of float values
relErrCmpd(Double a, b, err) : int (tkmath)
- Does a relative comparison given a certain error range of Double values.
relErrCmpf(float a, b, err) : int (tkmath)
- Does a relative comparison given a certain error range of float values.
roundd(Double a) : Double (tkmath)
- Returns rounded value
roundf(float a) : float (tkmath)
- Returns rounded value
sincd(Complexd a) : Complexd (tkmath)
- Returns complex sin(a)
sincf(Complexf a) : Complexf (tkmath)
- Returns complex sin(a)
sind(Double a) : Double (tkmath)
- Calculate double precision sin(a)
sinf(float a) : float (tkmath)
- Calculate single precision sin(a)
sinhcd(Complexd a) : Complexd (tkmath)
- Returns complex sinh(a)
sinhcf(Complexf a) : Complexf (tkmath)
- Returns complex sinh(a)
sinhd(Double a) : Double (tkmath)
- Calculate double precision sinh(a)
sinhf(float a) : float (tkmath)
- Calculate single precision sinh(a)
sqrtcd(Complexd a) : Complexd (tkmath)
- Returns complex double precision √a
sqrtcf(Complexf a) : Complexf (tkmath)
- Returns complex single precision √a
sqrtd(Double a) : Double (tkmath)
- Returns √a
sqrtf(float a) : float (tkmath)
- Returns √a
tancf(Complexf a) : Complexf (tkmath)
- Returns complex tan(a)
tancf(Complexd a) : Complexd (tkmath)
- Returns complex tan(a)
tand(Double a) : Double (tkmath)
- Calculate double precision tan(a)
tanf(float a) : float (tkmath)
- Calculate single precision tan(a)
tanhcd(Complexd a) : Complexd (tkmath)
- Returns complex tanh(a)
tanhcf(Complexf a) : Complexf (tkmath)
- Returns complex tanh(a)
tanhd(Double a) : Double (tkmath)
- Calculate double precision tanh(a)
tanhf(float a) : float (tkmath)
- Calculate single precision tanh(a)
vector2d(Double a, b) : Vector2d (tkmath)
- Initialise and return new Vector2d instance with x=a and y=b
vector2f(float a, b) : Vector2f (tkmath)
- Initialise and return new Vector2f instance with x=a and y=b
vector3d(Double a, b, c) : Vector3d (tkmath)
- Initialise and return new Vector3d instance with x=a, y=b and z=c
vector3f(float a, b, c) : Vector3f (tkmath)
- Initialise and return new Vector3f instance with x=a, y=b and z=c
vector4d(Double a, b, c, d) : Vector4d (tkmath)
- Initialise and return new Vector4d instance with x=a, y=b, z=c and w=d
vector4f(float a, b, c, d) : Vector4f (tkmath)
- Initialise and return new Vector4f instance with x=a, y=b, z=c and w=dComplexd
- This class represents a double precision complex number.
add(Complexd v)
- add complex number v to this instance
div(Complexd v)
- Divide this instance by complex v
getA() : Double
- Get a property of reia
getAbs() : Double
- Returns length of complex number
getAbsSqr() : Double
- Returns squared length of complex number (faster than abs)
getPolarString() : String
- Get string representation of complex number (reia)
getR() : Double
- Get r property of reia
getString() : String
- Get string representation of complex number (x+iy)
getX() : Double
- Get x property of x+iy
getY() : Double
- Get y property of x+iy
init(Double a, b)
- Set value of instance to x=a and y=b (x+iy)
initf(float a, b)
- Set value of instance to single precision x=a and y=b (x+iy)
initPolar(Double a, b)
- Set value of instance to r=_a and a=_b (reia)
initPolarf(sF32 a, b)
- Set value of instance to r=_a and a=_b (reia)
invert()
- Invert this instance (v=1/v)
mul(Complexd v)
- Multiply this instance with complex v
mulConj(Complexd v) : float
- Multiply this instance with complex conjugated v, ((x1+iy1)*(x2-iy2))
muld(Double v)
- Multiply this instance with scalar v
New(Double a, b) : Complexd
- Returns new instance with values x=a and y=b of (x+iy)
NewPolar(Double va, vb) : Complexd
- Returns new instance with values r=va anda a=vb of (reia)
setA(Double a)
- Set a property of reia
setR(Double r)
- Set r property of reia
setX(Double x)
- Set x property of x+iy
setY(Double x)
- Set y property of x+iy
sub(Complexd v)
- substract complex number v from this instance
unit()
- Set length of instance to 1
unitScale(Double s)
- Set length of instance to sComplexf
- This class represents a single precision complex number.
add(Complexf v)
- add complex number v to this instance
div(Complexf v)
- Divide this instance by complex v
getA() : float
- Get a property of reia
getAbs() : float
- Returns length of complex number
getAbsSqr() : float
- Returns squared length of complex number (faster than abs)
getPolarString() : String
- Get string representation of complex number (reia)
getR() : float
- Get r property of reia
getString() : String
- Get string representation of complex number (x+iy)
getX() : float
- Get x property of x+iy
getY() : float
- Get y property of x+iy
init(float a, b)
- Set value of instance to x=a and y=b (x+iy)
initPolar(float a, b)
- Set value of instance to r=_a and a=_b (reia)
invert()
- Invert this instance (v=1/v)
mul(Complexf v)
- Multiply this instance with complex v
mulConj(Complexf v) : float
- Multiply this instance with complex conjugated v, ((x1+iy1)*(x2-iy2))
mulf(float v)
- Multiply this instance with scalar v
New(float a, b) : Complexf
- Returns new instance with values x=a and y=b of (x+iy)
NewPolar(float va, vb) : Complexf
- Returns new instance with values r=va and a=vb of (reia)
setA(float a)
- Set a property of reia
setR(float r)
- Set r property of reia
setX(float x)
- Set x property of x+iy
setY(float x)
- Set y property of x+iy
sub(Complexf v)
- substract complex number v from this instance
unit()
- Set length of instance to 1
unitScale(float s)
- Set length of instance to sMath
- This class is mainly for importing the most commonly used math constants from math.h
getDblEpsilonUnits() : int
- Returns current unit range for relative Double comparison, default is 100
getDblEpsilonZeroRange() : Double
- Returns the epsilon range for relative zero Double comparison, default is 0.000000000001
getFltEpsilonUnits() : int
- Returns current unit range for relative float comparison, default is 10
getFltEpsilonZeroRange() : float
- Returns the epsilon range for relative zero float comparison, default is 0.000001
setDblEpsilonUnits(int u)
- Set the relative unit range for relative Double comparison
setDblEpsilonZeroRange(Double a)
- Set the relative tolerance for Double epsilon range checks
setFltEpsilonUnits(int u)
- Set the relative unit range for relative float comparison
setFltEpsilonZeroRange(float a)
- Set the relative tolerance for float epsilon range checksfloat
M_1_PI
- 1/π=0.31830988618379067154f
float
M_2_PI
- 2/π=0.63661977236758134308f
float
M_2_SQRTPI
- 2/√π=1.12837916709551257390f
float
M_E
- e=2.7182818284590452354f
float
M_LN10
- log(10)=2.30258509299404568402f
float
M_LN2
- log(2)=0.69314718055994530942f
float
M_LOG10E
- log10(e)=0.43429448190325182765f
float
M_LOG2E
- log2(e)=1.4426950408889634074f
float
M_PI
- π=3.14159265358979323846f
float
M_PI_2
- π/2=1.57079632679489661923f
float
M_PI_4
- π/4=0.78539816339744830962f
float
M_SQRT1_2
- 1/√2=0.70710678118654752440f
float
M_SQRT2
- √2=1.41421356237309504880f
Matrix
- Base class for all matrix objects
getColumnMajor() : boolean
- Get current element order
setColumnMajor(boolean bEnabled)
- Set element order (column major/row major)Matrix2d
- This class represents a double precision 2x2 square matrix.
add(Matrix2d m)
- Add another matrix m to this instance
det() : Double
- Calculate determinant of matrix
getA() : Double
- Get value of a element
getAbs() : Double
- Calculate the Hilbert-Schmidt norm of the matrix
getAbsSqr() : Double
- Calculate the squared Hilbert-Schmidt norm of the matrix
getB() : Double
- Get value of b element
getC() : Double
- Get value of c element
getCol(int c) : Vector2d
- Get column c values
getD() : Double
- Get value of d element
getRow(int r) : Vector2d
- Get row r values
getString() : String
- Get string representation of matrix ((a, b), (c, d))
init(Doubla va, Double vb, vc, vd)
- Initialise matrix
initCol(int c, Double va, vb)
- Initialise column c of matrix
initColV(int c, Vector2d v)
- Initialise column c of matrix
initf(float va, vb, vc, vd)
- Initialise matrix
initIdentity()
- Initialize with identity matrix.
initRow(int r, Double va, vb)
- Initialise row r of matrix
initRowV(int r, Vector2d v)
- Initialise row r of matrix
invert()
- Calculate inversion of matrix, so that A*A-1=U
mul(Matrix2d m)
- Multiply this instance with matrix m
muld(Double v)
- Multiply this instance with scalar value v
mulv(Vector2d v) : Vector2d
- Multiply this instance with a 2dim vector
New(Double va, vb, vc, vd) : Matrix2d
- Initialise and return new instance of Matrix2d
setA(Double v)
- Set a element to v
setB(Double v)
- Set b element to v
setC(Double v)
- Set c element to v
setCol(int c, Vector2d v)
- Set column c with values from v
setD(Double v)
- Set d element to v
setRow(int r, Vector2d v)
- Set row r with values from v
sub(Matrix2d m)
- Substract another matrix m from this instance
transpose()
- Transpose matrix
unit()
- Normalise matrix with Hilbert-Schmidt norm
unitScale(Double v)
- Normalise matrix with Hilbert-Schmidt norm and multiply with v afterwardsMatrix2f
- This class represents a single precision 2x2 square matrix.
add(Matrix2f m)
- Add another matrix m to this instance
det() : float
- Calculate determinant of matrix
getA() : float
- Get value of a element
getAbs() : float
- Calculate the Hilbert-Schmidt norm of the matrix
getAbsSqr() : float
- Calculate the squared Hilbert-Schmidt norm of the matrix
getB() : float
- Get value of b element
getC() : float
- Get value of c element
getCol(int c) : Vector2f
- Get column c values
getD() : float
- Get value of d element
getRow(int r) : Vector2f
- Get row r values
getString() : String
- Get string representation of matrix ((a, b), (c, d))
init(float va, vb, vc, vd)
- Initialise matrix
initCol(int c, float va, vb)
- Initialise column c of matrix
initColV(int c, Vector2f v)
- Initialise column c of matrix
initIdentity()
- Initialize with identity matrix.
initRow(int r, float va, vb)
- Initialise row r of matrix
initRowV(int r, Vector2f v)
- Initialise row r of matrix
invert()
- Calculate inversion of matrix, so that A*A-1=U
mul(Matrix2f m)
- Multiply this instance with matrix m
mulf(float v)
- Multiply this instance with scalar value v
mulv(Vector2f v) : Vector2f
- Multiply this instance with a 2dim vector
New(float va, vb, vc, vd) : Matrix2f
- Initialise and return new instance of Matrix2f
setA(float v)
- Set a element to v
setB(float v)
- Set b element to v
setC(float v)
- Set c element to v
setCol(int c, Vector2f v)
- Set column c with values from v
setD(float v)
- Set d element to v
setRow(int r, Vector2f v)
- Set row r with values from v
sub(Matrix2f m)
- Substract another matrix m from this instance
transpose()
- Transpose matrix
unit()
- Normalise matrix with Hilbert-Schmidt norm
unitScale(float v)
- Normalise matrix with Hilbert-Schmidt norm and multiply with v afterwardsMatrix3d
- This class represents a single precision 3x3 square matrix.
add(Matrix3d m)
- Add another matrix m to this instance
det() : Double
- Calculate determinant of matrix
getA() : Double
- Get value of a element
getAbs() : Double
- Calculate the Hilbert-Schmidt norm of the matrix
getAbsSqr() : Double
- Calculate the squared Hilbert-Schmidt norm of the matrix
getB() : Double
- Get value of b element
getC() : Double
- Get value of c element
getCol(int c) : Vector3d
- Get column c values
getD() : Double
- Get value of d element
getE() : Double
- Get value of e element
getF() : Double
- Get value of f element
getG() : Double
- Get value of g element
getH() : Double
- Get value of h element
getI() : Double
- Get value of i element
getRow(int r) : Vector3d
- Get row r values
getString() : String
- Get string representation of matrix ((a, b, c), (d, e, f), (g, h, i))
init(Double va, vb, vc, vd, ve, vf, vg, vh, vi)
- Initialise matrix
initCol(int c, Double va, vb, vc)
- Initialise column c of matrix
initColV(int c, Vector3d v)
- Initialise column c of matrix
initf(float va, vb, vc, vd, ve, vf, vg, vh, vi)
- Initialise matrix
initIdentity()
- Initialize with identity matrix.
initRow(int r, Double va, vb, vc)
- Initialise row r of matrix
initRowV(int r, Vector3d v)
- Initialise row r of matrix
invert()
- Calculate inversion of matrix, so that A*A-1=U
mul(Matrix3d m)
- Multiply this instance with matrix m
muld(Double v)
- Multiply this instance with scalar value v
mulv(Vector3d v) : Vector3d
- Multiply this instance with a 3dim vector
New(Double va, vb, vc, vd, ve, vf, vg, vh, vi) : Matrix3d
- Initialise and return new instance of Matrix3d
setA(Double v)
- Set a element to v
setB(Double v)
- Set b element to v
setC(Double v)
- Set c element to v
setCol(int c, Vector3d v)
- Set column c with values from v
setD(Double v)
- Set d element to v
setE(Double v)
- Set e element to v
setF(Double v)
- Set f element to v
setG(Double v)
- Set g element to v
setH(Double v)
- Set h element to v
setI(Double v)
- Set i element to v
setRow(int r, Vector3d v)
- Set row r with values from v
sub(Matrix3d m)
- Substract another matrix m from this instance
transpose()
- Transpose matrix
unit()
- Normalise matrix with Hilbert-Schmidt norm
unitScale(Double v)
- Normalise matrix with Hilbert-Schmidt norm and multiply with v afterwardsMatrix3f
- This class represents a single precision 3x3 square matrix.
add(Matrix3f m)
- Add another matrix m to this instance
det() : float
- Calculate determinant of matrix
getA() : float
- Get value of a element
getAbs() : float
- Calculate the Hilbert-Schmidt norm of the matrix
getAbsSqr() : float
- Calculate the squared Hilbert-Schmidt norm of the matrix
getB() : float
- Get value of b element
getC() : float
- Get value of c element
getCol(int c) : Vector3f
- Get column c values
getD() : float
- Get value of d element
getE() : float
- Get value of e element
getF() : float
- Get value of f element
getG() : float
- Get value of g element
getH() : float
- Get value of h element
getI() : float
- Get value of i element
getRow(int r) : Vector3f
- Get row r values
getString() : String
- Get string representation of matrix ((a, b, c), (d, e, f), (g, h, i))
init(float va, vb, vc, vd, ve, vf, vg, vh, vi)
- Initialise matrix
initCol(int c, float va, vb, vc)
- Initialise column c of matrix
initColV(int c, Vector3f v)
- Initialise column c of matrix
initIdentity()
- Initialize with identity matrix.
initRow(int r, float va, vb, vc)
- Initialise row r of matrix
initRowV(int r, Vector3f v)
- Initialise row r of matrix
invert()
- Calculate inversion of matrix, so that A*A-1=U
mul(Matrix3f m)
- Multiply this instance with matrix m
mulf(float v)
- Multiply this instance with scalar value v
mulv(Vector3f v) : Vector3f
- Multiply this instance with a 3dim vector
New(float va, vb, vc, vd, ve, vf, vg, vh, vi) : Matrix3f
- Initialise and return new instance of Matrix3f
setA(float v)
- Set a element to v
setB(float v)
- Set b element to v
setC(float v)
- Set c element to v
setCol(int c, Vector3f v)
- Set column c with values from v
setD(float v)
- Set d element to v
setE(float v)
- Set e element to v
setF(float v)
- Set f element to v
setG(float v)
- Set g element to v
setH(float v)
- Set h element to v
setI(float v)
- Set i element to v
setRow(int r, Vector3f v)
- Set row r with values from v
sub(Matrix3f m)
- Substract another matrix m from this instance
transpose()
- Transpose matrix
unit()
- Normalise matrix with Hilbert-Schmidt norm
unitScale(float v)
- Normalise matrix with Hilbert-Schmidt norm and multiply with v afterwardsMatrix4d
- This class represents a double precision 4x4 square matrix.
add(Matrix4d m)
- Add another matrix m to this instance
BuildEulerXYX4d(Double a, b, c) : Matrix4d
- Build an euler rotation matrix with XYX convention
BuildEulerXYZ4d(Double a, b, c) : Matrix4d
- Build an euler rotation matrix with XYZ convention
BuildEulerXZX4d(Double a, b, c) : Matrix4d
- Build an euler rotation matrix with XZX convention
BuildEulerXZY4d(Double a, b, c) : Matrix4d
- Build an euler rotation matrix with XZY convention
BuildEulerYXY4d(Double a, b, c) : Matrix4d
- Build an euler rotation matrix with YXY convention
BuildEulerYXZ4d(Double a, b, c) : Matrix4d
- Build an euler rotation matrix with YXZ convention
BuildEulerYZX4d(Double a, b, c) : Matrix4d
- Build an euler rotation matrix with YZX convention
BuildEulerYZY4d(Double a, b, c) : Matrix4d
- Build an euler rotation matrix with YZY convention
BuildEulerZXY4d(Double a, b, c) : Matrix4d
- Build an euler rotation matrix with ZXY convention
BuildEulerZXZ4d(Double a, b, c) : Matrix4d
- Build an euler rotation matrix with ZXZ convention
BuildEulerZYX4d(Double a, b, c) : Matrix4d
- Build an euler rotation matrix with ZYX convention
BuildEulerZYZ4d(Double a, b, c) : Matrix4d
- Build an euler rotation matrix with ZYZ convention
BuildLookAtMatrix4d(Vector3d eye, center, up) : Matrix4d
- Build a look at matrix
BuildPerspectiveMatrix4d(Double fov, aspect, zNear, zFar) : Matrix4d
- Builds a perspective matrix
BuildRotateMatrix4d(Double angle, Vector3d axis) : Matrix4d
- Build a rotation matrix
BuildTranslateMatrix4d(Vector3d move) : Matrix4d
- Build a translation matrix
det() : Double
- Calculate determinant of matrix
getA() : Double
- Get value of a element
getAbs() : Double
- Calculate the Hilbert-Schmidt norm of the matrix
getAbsSqr() : Double
- Calculate the squared Hilbert-Schmidt norm of the matrix
getB() : Double
- Get value of b element
getC() : Double
- Get value of c element
getCol(int c) : Vector4d
- Get column c values
getD() : Double
- Get value of d element
getE() : Double
- Get value of e element
getF() : Double
- Get value of f element
getG() : Double
- Get value of g element
getH() : Double
- Get value of h element
getI() : Double
- Get value of i element
getJ() : Double
- Get value of j element
getK() : Double
- Get value of k element
getL() : Double
- Get value of l element
getM() : Double
- Get value of m element
getN() : Double
- Get value of n element
getO() : Double
- Get value of o element
getP() : Double
- Get value of p element
getRow(int r) : Vector4d
- Get row r values
getString() : String
- Get string representation of matrix ((a, b, c, d), (e, f, g, h), (i, j, k, l), (m, n, o, p))
init(Double va, vb, vc, vd, ve, vf, vg, vh, vi, vj, vk, vl, vm, vn, vo, vp)
- Initialise matrix
initCol(int c, Double va, vb, vc, vd)
- Initialise column c of matrix
initColV(int c, Vector4d v)
- Initialise column c of matrix
initEulerXYX(Double a, b, c)
- Initialise with euler roation matrix
initEulerXYZ(Double a, b, c)
- Initialise with euler roation matrix
initEulerXZX(Double a, b, c)
- Initialise with euler roation matrix
initEulerXZY(Double a, b, c)
- Initialise with euler roation matrix
initEulerYXY(Double a, b, c)
- Initialise with euler roation matrix
initEulerYXZ(Double a, b, c)
- Initialise with euler roation matrix
initEulerYZX(Double a, b, c)
- Initialise with euler roation matrix
initEulerYZY(Double a, b, c)
- Initialise with euler roation matrix
initEulerZXY(Double a, b, c)
- Initialise with euler roation matrix
initEulerZXZ(Double a, b, c)
- Initialise with euler roation matrix
initEulerZYX(Double a, b, c)
- Initialise with euler roation matrix
initEulerZYZ(Double a, b, c)
- Initialise with euler roation matrix
initf(float va, vb, vc, vd, ve, vf, vg, vh, vi, vj, vk, vl, vm, vn, vo, vp)
- Initialise matrix
initIdentity()
- Initialize with identity matrix.
initRow(int r, Double va, vb, vc, vd)
- Initialise row r of matrix
initRowV(int r, Vector4d v)
- Initialise row r of matrix
invert()
- Calculate inversion of matrix, so that A*A-1=U
mul(Matrix4d m)
- Multiply this instance with matrix m
mulf(Double v)
- Multiply this instance with scalar value v
mulv(Vector4d v) : Vector4d
- Multiply this instance with a 4dim vector
New(Object o) : Matrix4d
- Initialise from an array and return new instance of Matrix4d
setA(Double v)
- Set a element to v
setB(Double v)
- Set b element to v
setC(Double v)
- Set c element to v
setCol(int c, Vector4d v)
- Set column c with values from v
setD(Double v)
- Set d element to v
setE(Double v)
- Set e element to v
setF(Double v)
- Set f element to v
setG(Double v)
- Set g element to v
setH(Double v)
- Set h element to v
setI(Double v)
- Set i element to v
setJ(Double v)
- Set j element to v
setK(Double v)
- Set k element to v
setL(Double v)
- Set l element to v
setM(Double v)
- Set m element to v
setN(Double v)
- Set n element to v
setO(Double v)
- Set o element to v
setP(Double v)
- Set p element to v
setRow(int r, Vector4d v)
- Set row r with values from v
sub(Matrix4d m)
- Substract another matrix m from this instance
transpose()
- Transpose matrix
unit()
- Normalise matrix with Hilbert-Schmidt norm
unitScale(Double v)
- Normalise matrix with Hilbert-Schmidt norm and multiply with v afterwardsMatrix4f
- This class represents a single precision 4x4 square matrix.
add(Matrix4f m)
- Add another matrix m to this instance
BuildEulerXYX4f(float a, b, c) : Matrix4f
- Build an euler rotation matrix with XYX convention
BuildEulerXYZ4f(float a, b, c) : Matrix4f
- Build an euler rotation matrix with XYZ convention
BuildEulerXZX4f(float a, b, c) : Matrix4f
- Build an euler rotation matrix with XZX convention
BuildEulerXZY4f(float a, b, c) : Matrix4f
- Build an euler rotation matrix with XZY convention
BuildEulerYXY4f(float a, b, c) : Matrix4f
- Build an euler rotation matrix with YXY convention
BuildEulerYXZ4f(float a, b, c) : Matrix4f
- Build an euler rotation matrix with YXZ convention
BuildEulerYZX4f(float a, b, c) : Matrix4f
- Build an euler rotation matrix with YZX convention
BuildEulerYZY4f(float a, b, c) : Matrix4f
- Build an euler rotation matrix with YZY convention
BuildEulerZXY4f(float a, b, c) : Matrix4f
- Build an euler rotation matrix with ZXY convention
BuildEulerZXZ4f(float a, b, c) : Matrix4f
- Build an euler rotation matrix with ZXZ convention
BuildEulerZYX4f(float a, b, c) : Matrix4f
- Build an euler rotation matrix with ZYX convention
BuildEulerZYZ4f(float a, b, c) : Matrix4f
- Build an euler rotation matrix with ZYZ convention
BuildLookAtMatrix4f(Vector3f eye, center, up) : Matrix4f
- Build a look at matrix
BuildPerspectiveMatrix4f(float fov, aspect, zNear, zFar) : Matrix4f
- Builds a perspective matrix
BuildRotateMatrix4f(float angle, Vector3f axis) : Matrix4f
- Build a rotation matrix
BuildTranslateMatrix4f(Vector3f move) : Matrix4f
- Build a translation matrix
det() : float
- Calculate determinant of matrix
getA() : float
- Get value of a element
getAbs() : float
- Calculate the Hilbert-Schmidt norm of the matrix
getAbsSqr() : float
- Calculate the squared Hilbert-Schmidt norm of the matrix
getB() : float
- Get value of b element
getC() : float
- Get value of c element
getCol(int c) : Vector4f
- Get column c values
getD() : float
- Get value of d element
getE() : float
- Get value of e element
getF() : float
- Get value of f element
getG() : float
- Get value of g element
getH() : float
- Get value of h element
getI() : float
- Get value of i element
getJ() : float
- Get value of j element
getK() : float
- Get value of k element
getL() : float
- Get value of l element
getM() : float
- Get value of m element
getN() : float
- Get value of n element
getO() : float
- Get value of o element
getP() : float
- Get value of p element
getQuaternionf() : Quaternionf
- Tries to find a Quaternion representation of the matrix if possible
getRC(int row, col)
- Get element at (row, column)
getRow(int r) : Vector4f
- Get row r values
getString() : String
- Get string representation of matrix ((a, b, c, d), (e, f, g, h), (i, j, k, l), (m, n, o, p))
init(float va, vb, vc, vd, ve, vf, vg, vh, vi, vj, vk, vl, vm, vn, vo, vp)
- Initialise matrix
initCol(int c, float va, vb, vc, vd)
- Initialise column c of matrix
initColV(int c, Vector4f v)
- Initialise column c of matrix
initEulerXYX(float a, b, c)
- Initialise with euler rotation matrix
initEulerXYZ(float a, b, c)
- Initialise with euler rotation matrix
initEulerXZX(float a, b, c)
- Initialise with euler rotation matrix
initEulerXZY(float a, b, c)
- Initialise with euler rotation matrix
initEulerYXY(float a, b, c)
- Initialise with euler rotation matrix
initEulerYXZ(float a, b, c)
- Initialise with euler rotation matrix
initEulerYZX(float a, b, c)
- Initialise with euler rotation matrix
initEulerYZY(float a, b, c)
- Initialise with euler rotation matrix
initEulerZXY(float a, b, c)
- Initialise with euler rotation matrix
initEulerZXZ(float a, b, c)
- Initialise with euler rotation matrix
initEulerZYX(float a, b, c)
- Initialise with euler rotation matrix
initEulerZYZ(float a, b, c)
- Initialise with euler rotation matrix
initIdentity()
- Initialize with identity matrix.
initRotate(float angle, Vector3f dir)
- Initialize with rotation matrix for rotation of angle around vector dir.
initRow(int r, float va, vb, vc, vd)
- Initialise row r of matrix
initRowV(int r, Vector4f v)
- Initialise row r of matrix
invert()
- Calculate inversion of matrix, so that A*A-1=U
mul(Matrix4f m)
- Multiply this instance with matrix m
mulf(float v)
- Multiply this instance with scalar value v
mulv(Vector4f v) : Vector4f
- Multiply this instance with a 4dim vector
New(Object o) : Matrix4f
- Initialise from an array and return new instance of Matrix4f
setA(float v)
- Set a element to v
setB(float v)
- Set b element to v
setC(float v)
- Set c element to v
setCol(int c, Vector4f v)
- Set column c with values from v
setD(float v)
- Set d element to v
setE(float v)
- Set e element to v
setF(float v)
- Set f element to v
setG(float v)
- Set g element to v
setH(float v)
- Set h element to v
setI(float v)
- Set i element to v
setJ(float v)
- Set j element to v
setK(float v)
- Set k element to v
setL(float v)
- Set l element to v
setM(float v)
- Set m element to v
setN(float v)
- Set n element to v
setO(float v)
- Set o element to v
setP(float v)
- Set p element to v
setRC(int row, col, float v)
- Set element at (row, column) to v
setRow(int r, Vector4f v)
- Set row r with values from v
sub(Matrix4f m)
- Substract another matrix m from this instance
transpose()
- Transpose matrix
unit()
- Normalise matrix with Hilbert-Schmidt norm
unitScale(float v)
- Normalise matrix with Hilbert-Schmidt norm and scale by v afterwardsQuaterniond
- This class represents a single precision quaternion of the form a+ib+jc+kd.
add(Quaterniond v)
- add quaternion v to this instance
conjMul(Quaterniond v)
- Multiply this conjugated instance with quaternion v (Grassmann product)
dot(Quaterniond v) : Double
- Calculate dot product (inner product) of this instance and quaternion v
getAbs() : Double
- Return the absolute value of this instance
getAbsSqr() : Double
- Return the squared length of this instance
getAngle() : Double
- Calculate quaternion angle
getI() : Double
- Get imaginery i value
getJ() : Double
- Get imaginery j value
getK() : Double
- Get imaginery k value
getMatrix4d() : Matrix4d
- Get 4x4 matrix representation of quaternion
getPureUnit() : Quaterniond
- Returns pure unit quaternion from instance
getR() : Double
- Get Real value
getRadius() : Double
- Calculate quaternion radius (_getAbs)
getString() : String
- Get string representation of quaternion number (a+ib+jc+kd)
getV() : Vector3d
- Get vector value
init(Double a, b, c, d)
- Init quaternion to a+ib+jc+kd
initf(float a, b, c, d)
- Init quaternion to a+ib+jc+kd
invert()
- Calculate the reciprocal value 1/q
mul(Quaterniond v)
- Multiply this instance with quaternion v (Grassmann product)
mulConj(Quaterniond v)
- Multiply this instance with conjugated quaternion v (Grassmann product)
mulf(Double v)
- Multiply this instance with scalar v
New(Double a, b, c, d) : Quaterniond
- Init quaternion to a+ib+jc+kd and return new instance
outer(Quaterniond v) : Quaterniond
- Calculate the outer product of this instance and quaternion v
setAngle(Double a)
- Set new quaternion angle
setI(Double a)
- Set imaginery i part to a
setJ(Double a)
- Set imaginery j part to a
setK(Double a)
- Set imagnery k part to a
setPureUnit(Quaterniond v)
- Set new pure unit vector of quaternion
setR(Double a)
- Set real part to a
setRadius(Double a)
- Set new quaternion radius
setV(Vector3d v)
- Set vector part to v
sub(Quaterniond v)
- substract quaternion v from this instance
unit()
- Set length of quaternion to 1
unitScale(Double s)
- Set length of quaternion to sQuaternionf
- This class represents a single precision quaternion of the form a+ib+jc+kd.
add(Quaternionf v)
- add quaternion v to this instance
conjMul(Quaternionf v)
- Multiply this conjugated instance with quaternion v (Grassmann product)
dot(Quaternionf v) : float
- Calculate dot product (inner product) of this instance and quaternion v
getAbs() : float
- Return the absolute value of this instance
getAbsSqr() : float
- Return the squared length of this instance
getAngle() : float
- Calculate quaternion angle
getI() : float
- Get imaginery i value
getJ() : float
- Get imaginery j value
getK() : float
- Get imaginery k value
getMatrix4f() : Matrix4f
- Get 4x4 matrix representation of quaternion
getPureUnit() : Quaternionf
- Returns pure unit quaternion from instance
getR() : float
- Get Real value
getRadius() : float
- Calculate quaternion radius (_getAbs)
getRotateMatrix4f() : Matrix4f
- Get 4x4 rotation matrix representation of quaternion q*conj q
getString() : String
- Get string representation of quaternion number (a+ib+jc+kd)
getV() : Vector3f
- Get vector value
init(float a, b, c, d)
- Init quaternion to a+ib+jc+kd
invert()
- Calculate the reciprocal value 1/q
mul(Quaternionf v)
- Multiply this instance with quaternion v (Grassmann product)
mulConj(Quaternionf v)
- Multiply this instance with conjugated quaternion v (Grassmann product)
mulf(float v)
- Multiply this instance with scalar v
New(float a, b, c, d) : Quaternionf
- Init quaternion to a+ib+jc+kd and return new instance
outer(Quaternionf v) : Quaternionf
- Calculate the outer product of this instance and quaternion v
setAngle(float a)
- Set new quaternion angle
setI(float a)
- Set imaginery i part to a
setJ(float a)
- Set imaginery j part to a
setK(float a)
- Set imagnery k part to a
setPureUnit(Quaternionf v)
- Set new pure unit vector of quaternion
setR(float a)
- Set real part to a
setRadius(float a)
- Set new quaternion radius
setV(Vector3f v)
- Set vector part to v
sub(Quaternionf v)
- substract quaternion v from this instance
unit()
- Set length of quaternion to 1
unitScale(float s)
- Set length of quaternion to sVector2d
- This class represents a double precision 2 dimensional coordinate vector.
add(Vector2d v)
- Add another vector v to this instance
dot(Vector2d v) : Double
- Calculate dot product from this instance and v
getAbs() : Double
- Return length of vector
getAbsSqr() : Double
- Return squared length of vector
getString() : String
- Get string representation (x, y) of vector
getX() : Double
- Get value of x element
getY() : Double
- Get value of y element
init(Double a, b)
- Initialise values to x=a and y=b
initf(float a, b)
- Initialise with single precision values to x=a and x=b
initScaled(Vector2d v, Double s)
- Initialise values to s*v
mul(Vector2d v)
- Multiply the x element of this instance with the x element of v and do the same with the y element
muld(Double v)
- Multiply this instance with scalar value v
New(Double a, b) : Vector2d
- Initialise and return new Vector2d instance with x=a and y=b
setX(Double a)
- Set x element to a
setY(Double a)
- Set y element to a
sub(Vector2d v)
- Substract another vector v from this instance
tensor(Vector2d v) : Matrix2d
- Create resulting matrix of tensor product from this instance and v
unit()
- Set length to 1
unitScale(Double s)
- Set length to sVector2f
- This class represents a single precision 2 dimensional coordinate vector.
add(Vector2f v)
- Add another vector v to this instance
dot(Vector2f v) : float
- Calculate dot product from this instance and v
getAbs() : float
- Return length of vector
getAbsSqr() : float
- Return squared length of vector
getString() : String
- Get string representation (x, y) of vector
getX() : float
- Get value of x element
getY() : float
- Get value of y element
init(float a, b)
- Initialise values to x=a and y=b
initScalef(Vector2f v, float s)
- Initialise values to s*v
mul(Vector2f v)
- Multiply the x element of this instance with the x element of v and do the same with the y element
mulf(float v)
- Multiply this instance with scalar value v
New(float a, b) : Vector2f
- Initialise and return new Vector2f instance with x=a and y=b
setX(float a)
- Set x element to a
setY(float a)
- Set y element to a
sub(Vector2f v)
- Substract another vector v from this instance
tensor(Vector2f v) : Matrix2f
- Create resulting matrix of tensor product from this instance and v
unit()
- Set length to 1
unitScale(float s)
- Set length to sVector3d
- This class represents a double precision 3 dimensional coordinate vector.
add(Vector3d v)
- Add another vector v to this instance
cross(Vector3d v) : Vector3d
- Calculate cross product from this instance and v
dot(Vector3d v) : Double
- Calculate dot product from this instance and v
getAbs() : Double
- Return length of vector
getAbsSqr() : Double
- Return squared length of vector
getString() : String
- Get string representation of vector (x, y, z)
getX() : Double
- Get value of x element
getY() : Double
- Get value of y element
getZ() : Double
- Get value of z element
init(Double a, b, c)
- Initialise values to x=a, y=b and z=c
initf(float a, b, c)
- Initialise values to single precision x=a, y=b and z=c
initScaled(Vector3d v, Double s)
- Initialise vector to s*v
mul(Vector3d v)
- Multiply the x element of this instance with the x element of v and do the same with the y and z element
muld(Double v)
- Multiply this instance with scalar value v
New(Double a, b, c) : Vector3d
- Initialise and return new Vector3d instance with x=a, y=b and z=c
setX(Double a)
- Set x element to a
setY(Double a)
- Set y element to a
setZ(Double a)
- Set z element to a
sub(Vector3d v)
- Substract another vector v from this instance
tensor(Vector3d v) : Matrix3d
- Create resulting matrix of tensor product from this instance and v
triple(Vector3d b, c) : Double
- Calculate triple product this.dot(b.cross(c)) (a*(bxc))
unit()
- Set length to 1
unitScale(Double s)
- Set length to sVector3f
- This class represents a single precision 3 dimensional coordinate vector.
add(Vector3f v)
- Add another vector v to this instance
cross(Vector3f v) : Vector3f
- Calculate cross product from this instance and v
dot(Vector3f v) : float
- Calculate dot product from this instance and v
getAbs() : float
- Return length of vector
getAbsSqr() : float
- Return squared length of vector
getString() : String
- Get string representation of vector (x, y, z)
getX() : float
- Get value of x element
getY() : float
- Get value of y element
getZ() : float
- Get value of z element
init(float a, b, c)
- Initialise values to x=a, y=b and z=c
initScalef(Vector3f v, float s)
- Initialise vector to s*v
mul(Vector3f v)
- Multiply the x element of this instance with the x element of v and do the same with the y and z element
mulf(float v)
- Multiply this instance with scalar value v
New(float a, b, c) : Vector3f
- Initialise and return new Vector3f instance with x=a, y=b and z=c
setX(float a)
- Set x element to a
setY(float a)
- Set y element to a
setZ(float a)
- Set z element to a
sub(Vector3f v)
- Substract another vector v from this instance
tensor(Vector3f v) : Matrix3f
- Create resulting matrix of tensor product from this instance and v
triple(Vector3f b, c) : float
- Calculate triple product this.dot(b.cross(c)) (a*(bxc))
unit()
- Set length to 1
unitScale(float s)
- Set length to sVector4d
- This class represents a double precision 4 dimensional euclidean space vector.
add(Vector4d v)
- Add another vector v to this instance
dot(Vector4d v) : Double
- Calculate dot product from this instance and v
getAbs() : Double
- Return length of vector
getAbsSqr() : Double
- Return squared length of vector
getString() : String
- Get string representation of vector (x, y, z, w)
getW() : Double
- Get value of w element
getX() : Double
- Get value of x element
getY() : Double
- Get value of y element
getZ() : Double
- Get value of z element
init(Double a, b, c, d)
- Initialise values to x=a, y=b, z=c and w=d
initf(float a, b, c, d)
- Initialise values to single precision x=a, y=b, z=c and w=d
initScaled(Vector4d v, Double s)
- Initialise vector to s*v
mul(Vector4d v)
- Multiply the x element of this instance with the x element of v and do the same with the y, z and w elements
muld(Double v)
- Multiply this instance with scalar value v
New(Double a, b, c, d) : Vector4d
- Initialise and return new Vector4d instance with x=a, y=b, z=c and w=d
setW(Double a)
- Set w element to a
setX(Double a)
- Set x element to a
setY(Double a)
- Set y element to a
setZ(Double a)
- Set z element to a
sub(Vector4d v)
- Substract another vector v from this instance
tensor(Vector4d v) : Matrix4f
- Create resulting matrix of tensor product from this instance and v
unit()
- Set length to 1
unitScale(Double s)
- Set length to sVector4f
- This class represents a single precision 4 dimensional euclidean space vector.
add(Vector4f v)
- Add another vector v to this instance
dot(Vector4f v) : float
- Calculate dot product from this instance and v
getAbs() : float
- Return length of vector
getAbsSqr() : float
- Return squared length of vector
getString() : String
- Get string representation of vector (x, y, z, w)
getW() : float
- Get value of w element
getX() : float
- Get value of x element
getY() : float
- Get value of y element
getZ() : float
- Get value of z element
init(float a, b, c, d)
- Initialise values to x=a, y=b, z=c and w=d
initScalef(Vector4f v, float s)
- Initialise vector to s*v
mul(Vector4f v)
- Multiply the x element of this instance with the x element of v and do the same with the y, z and w elements
mulf(float v)
- Multiply this instance with scalar value v
New(float a, b, c, d) : Vector4f
- Initialise and return new Vector4f instance with x=a, y=b, z=c and w=d
rotate(Matrix4f m)
- Multiply matrix by this vector and replace this vector by the result
setW(float a)
- Set w element to a
setX(float a)
- Set x element to a
setY(float a)
- Set y element to a
setZ(float a)
- Set z element to a
sub(Vector4f v)
- Substract another vector v from this instance
tensor(Vector4f v) : Matrix4f
- Create resulting matrix of tensor product from this instance and v
unit()
- Set length to 1
unitScale(float s)
- Set length to sFunction absd | ||||
Returns double precision absolute number | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function absf | ||||||||||
Returns single precision absolute number | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function acoscd | ||||
Returns complex acos(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function acoscf | ||||
Returns complex acos(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function acosd | ||||
Calculate double precision acos(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function acosf | ||||||||||
Calculate single precision acos(a) | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function acoshcd | ||||
Returns complex acosh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function acoshcf | ||||
Returns complex acosh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function acoshd | ||||
Calculate double precision acosh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function acoshf | ||||||||||
Calculate single precision acosh(a) | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function asincd | ||||
Returns complex asin(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function asincf | ||||
Returns complex asin(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function asind | ||||
Calculate double precision asin(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function asinf | ||||||||||
Calculate single precision asin(a) | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function asinhcd | ||||
Returns complex asinh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function asinhcf | ||||
Returns complex asinh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function asinhd | ||||
Calculate double precision asinh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function asinhf | ||||||||||
Calculate single precision asinh(a) | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function atan2d | |||
Calculate double precision atan(a/b), does not throw an exception when b is zero, | |||
Signature | |||
Arguments | |||
Returns | |||
| |||
Description | |||
returns in range -π<result<π |
Function atan2f | ||||||||||||||||||||
Calculate single precision atan(a/b), does not throw an exception when b is zero (but when a==b==0), | ||||||||||||||||||||
Signature | ||||||||||||||||||||
| ||||||||||||||||||||
Arguments | ||||||||||||||||||||
| ||||||||||||||||||||
Returns | ||||||||||||||||||||
| ||||||||||||||||||||
Description | ||||||||||||||||||||
returns in range -π<result<π |
Function atancd | ||||
Returns complex atan(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function atancf | ||||
Returns complex atan(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function atand | ||||
Calculate double precision atan(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function atanf | ||||||||||
Calculate single precision atan(a) | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function atanhcd | ||||
Returns complex atanh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function atanhcf | ||||
Returns complex atanh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function atanhd | ||||
Calculate double precision atanh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function atanhf | ||||||||||
Calculate single precision atanh(a) | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function ceild | ||||
Returns next natural value to a | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function ceilf | ||||||||||
Returns next natural value to a | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function complexd | |||
Returns new instance with values x=a and y=b of (x+iy) | |||
Signature | |||
Arguments | |||
Returns | |||
|
Function complexf | ||||||||||||||||||||
Returns new instance with values x=a and y=b of (x+iy) | ||||||||||||||||||||
Signature | ||||||||||||||||||||
| ||||||||||||||||||||
Arguments | ||||||||||||||||||||
| ||||||||||||||||||||
Returns | ||||||||||||||||||||
|
Function complexfPolar | |||
Returns new instance with values r=va and a=vb of (reia) | |||
Signature | |||
Arguments | |||
Returns | |||
|
Function complexfPolar | ||||||||||||||||||||
Returns new instance with values r=va and a=vb of (reia) | ||||||||||||||||||||
Signature | ||||||||||||||||||||
| ||||||||||||||||||||
Arguments | ||||||||||||||||||||
| ||||||||||||||||||||
Returns | ||||||||||||||||||||
|
Function coscd | ||||
Returns complex cos(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function coscf | ||||
Returns complex cos(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function cosd | ||||
Calculate double precision cos(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function cosf | ||||||||||
Calculate single precision cos(a) | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function coshcd | ||||
Returns complex cosh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function coshcf | ||||
Returns complex cosh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function coshd | ||||
Calculate double precision cosh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function coshf | ||||||||||
Calculate single precision cosh(a) | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function exp10d | ||||
Returns 10a | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function exp10f | ||||||||||
Returns 10a | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function exp2d | ||||
Returns 2a | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function exp2f | ||||||||||
Returns 2a | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function expcd | ||||
Returns complex ea | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function expcf | ||||
Returns complex ea | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function expd | ||||
Returns ea | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function expf | ||||||||||
Returns ea | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function floord | ||||
Returns previous natural value to a | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function floorf | ||||||||||
Returns previous natural value to a | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function hypotd | |||
Calculate double precision length of hypotenuse | |||
Signature | |||
Arguments | |||
Returns | |||
|
Function hypotf | ||||||||||||||||||||
Calculate single precision length of hypotenuse | ||||||||||||||||||||
Signature | ||||||||||||||||||||
| ||||||||||||||||||||
Arguments | ||||||||||||||||||||
| ||||||||||||||||||||
Returns | ||||||||||||||||||||
|
Function log10d | ||||
Returns log10(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function log10f | ||||||||||
Returns log10(a) | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function log2d | ||||
Returns log2(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function log2f | ||||||||||
Returns log2(a) | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function logcd | ||||
Returns complex log(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function logcf | ||||
Returns complex log(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function logd | ||||
Returns log(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function logf | ||||||||||
Returns log(a) | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function matrix2d | |||
Initialise and return new instance of Matrix2d | |||
Signature | |||
Arguments | |||
Returns | |||
|
Function matrix2f | ||||||||||||||||||||||||||||||
Initialise and return new instance of Matrix2f | ||||||||||||||||||||||||||||||
Signature | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
Arguments | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
Returns | ||||||||||||||||||||||||||||||
|
Function matrix3d | |||
Initialise and return new instance of Matrix3d | |||
Signature | |||
Arguments | |||
Returns | |||
|
Function matrix3f | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Initialise and return new instance of Matrix3f | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Signature | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Arguments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Returns | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Function matrix4d | ||||
Initialise from an array and return new instance of Matrix4d | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function matrix4f | ||||
Initialise from an array and return new instance of Matrix4f | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function modd | |||
Returns remainder of a/b | |||
Signature | |||
Arguments | |||
Returns | |||
|
Function modf | ||||||||||||||||||||
Returns remainder of a/b | ||||||||||||||||||||
Signature | ||||||||||||||||||||
| ||||||||||||||||||||
Arguments | ||||||||||||||||||||
| ||||||||||||||||||||
Returns | ||||||||||||||||||||
|
Function powcd | |||
Returns complex ab | |||
Signature | |||
Arguments | |||
Returns | |||
|
Function powcf | |||
Returns complex ab | |||
Signature | |||
Arguments | |||
Returns | |||
|
Function powd | |||
Returns ab | |||
Signature | |||
Arguments | |||
Returns | |||
|
Function powf | ||||||||||||||||||||
Returns ab | ||||||||||||||||||||
Signature | ||||||||||||||||||||
| ||||||||||||||||||||
Arguments | ||||||||||||||||||||
| ||||||||||||||||||||
Returns | ||||||||||||||||||||
|
Function quaterniond | ||||||||||||||||||||||||||||||
Init quaternion to a+ib+jc+kd and return new instance | ||||||||||||||||||||||||||||||
Signature | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
Arguments | ||||||||||||||||||||||||||||||
Returns | ||||||||||||||||||||||||||||||
Function quaternionf | ||||||||||||||||||||||||||||||
Init quaternion to a+ib+jc+kd and return new instance | ||||||||||||||||||||||||||||||
Signature | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
Arguments | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
Returns | ||||||||||||||||||||||||||||||
Function relCmpd | |||
Do a fast relative comparison of Double values | |||
Signature | |||
Arguments | |||
Returns | |||
|
Function relCmpf | ||||||||||||||||||||
Do a fast relative comparison of float values | ||||||||||||||||||||
Signature | ||||||||||||||||||||
| ||||||||||||||||||||
Arguments | ||||||||||||||||||||
| ||||||||||||||||||||
Returns | ||||||||||||||||||||
|
Function relErrCmpd | |||
Does a relative comparison given a certain error range of Double values. | |||
Signature | |||
Arguments | |||
Returns | |||
| |||
Description | |||
If both values are nonzero, equal means it fullfulls fabs(a-b)/fabs(a)<=err, else it fullfills fabs(nonzero(a,b))<=err. |
Function relErrCmpf | |||||||||||||||||||||||||
Does a relative comparison given a certain error range of float values. | |||||||||||||||||||||||||
Signature | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Arguments | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Returns | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Description | |||||||||||||||||||||||||
If both values are nonzero, equal means it fullfills fabs(a-b)/fabs(a)<=err, else it fullfills fabs(nonzero(a,b))<=err. |
Function roundd | ||||
Returns rounded value | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function roundf | ||||||||||
Returns rounded value | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function sincd | ||||
Returns complex sin(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function sincf | ||||
Returns complex sin(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function sind | ||||
Calculate double precision sin(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function sinf | ||||||||||
Calculate single precision sin(a) | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function sinhcd | ||||
Returns complex sinh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function sinhcf | ||||
Returns complex sinh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function sinhd | ||||
Calculate double precision sinh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function sinhf | ||||||||||
Calculate single precision sinh(a) | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function sqrtcd | ||||
Returns complex double precision √a | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function sqrtcf | ||||
Returns complex single precision √a | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function sqrtd | ||||
Returns √a | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function sqrtf | ||||||||||
Returns √a | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function tancf | ||||
Returns complex tan(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function tancf | ||||
Returns complex tan(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function tand | ||||
Calculate double precision tan(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function tanf | ||||||||||
Calculate single precision tan(a) | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function tanhcd | ||||
Returns complex tanh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function tanhcf | ||||
Returns complex tanh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function tanhd | ||||
Calculate double precision tanh(a) | ||||
Signature | ||||
Arguments | ||||
| ||||
Returns | ||||
|
Function tanhf | ||||||||||
Calculate single precision tanh(a) | ||||||||||
Signature | ||||||||||
| ||||||||||
Arguments | ||||||||||
| ||||||||||
Returns | ||||||||||
|
Function vector2d | |||
Initialise and return new Vector2d instance with x=a and y=b | |||
Signature | |||
Arguments | |||
Returns | |||
|
Function vector2f | ||||||||||||||||||||
Initialise and return new Vector2f instance with x=a and y=b | ||||||||||||||||||||
Signature | ||||||||||||||||||||
| ||||||||||||||||||||
Arguments | ||||||||||||||||||||
| ||||||||||||||||||||
Returns | ||||||||||||||||||||
|
Function vector3d | |
Initialise and return new Vector3d instance with x=a, y=b and z=c | |
Signature | |
Arguments | |
Returns | |
Function vector3f | |||||||||||||||||||||||||
Initialise and return new Vector3f instance with x=a, y=b and z=c | |||||||||||||||||||||||||
Signature | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Arguments | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Returns | |||||||||||||||||||||||||
Function vector4d | |
Initialise and return new Vector4d instance with x=a, y=b, z=c and w=d | |
Signature | |
Arguments | |
Returns | |
Function vector4f | ||||||||||||||||||||||||||||||
Initialise and return new Vector4f instance with x=a, y=b, z=c and w=d | ||||||||||||||||||||||||||||||
Signature | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
Arguments | ||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||
Returns | ||||||||||||||||||||||||||||||
auto-generated by "DOG", the TkScript document generator. Mon, 28/Dec/2015 13:15:54